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ABSTRACT

An efficient algorithm and subroutine is presented for the solution of
Kepler's equation f(E) = E-M-esinE = O, where e is the eccentricity, M the
mean anomaly and E the eccentric anomaly, This algorithm is based on simple
initial approximations that are cubics of M, and an iterative scheme that is
a slight generalization of the Newton-Raphson method, An extensive testing
involving 20,000 pairs of values of e and M show that for single precision
(~10-8) 42,0% of the cases require one iteration, 5/.8% two, and 0.2% three,
Both single and double precision FORTRAN V subroutine listings are provided

for the UNIVAC 1108 computer, the D, P. one requiring one additional

iteration,
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A GENERAL ALGORITHM FCR THE SOLUTICN OF
KEPLER'S EQUATICN FOR ELLIPTIC ORBITS

Edward W. Ng

Problem Defined

Th: classical Kepler's equation for elliptic motions is well-known in
astronautical applications. Stated simply, given a mean anomaly M in
radians, and an eccentricity O < e < 1, it is desired to find an eccentric

anomaly E which satisfies the eguation,

f(E) = E-M-esinE = 0 (1)

For a description of origin and usage of this equation, the reader is
referred to Brouwer and Clemence (1961) or Danby (1962},

Stated above M may be given any real value, but the nature of equation
(1) allows us to readily reduce the problem to an equivalent one for a
given M restricted in [0,7m]. First, the terms E, M and sinE will be positive
or negative togetner, Therefore for a given M < 0, one may solve egualion
(1) for |M| and take the negative of the result as the right answer, For
positive M > T we can define M = 2nn+ﬁ and E = 2nﬂ+€, where ﬁ and Q have
values in [-i',M], Equation (1) can then be solved for Q. With these
preliminaries, we are ready to address to our main problem of solving

Equation (1) for 0 s M < m,

JPL Technical Memorandum 33-496



IR VN

(A S0 e u A

gt

Methcd of Solution

l, Iterative Scheme

Various methods have been suggested for the solution of non-linear
equations of the form f(E) = O, where f is given and it is desired to find
E. Probably the most well-known is the Newton-Raphson iteration method,
(ef. Traub, 1964) which possesses a local quadratic convergence property.
To our knowledge most people today use this method for the solution of
Kepler's equation, A well-known higher order iterative scheme, one with
cubic convergence property, may be written as follows: Given f(E) = O and

an initial estimate E

O,
= «EXy & —-f—f—] k=0,1,2 (2)
B = B - Tt B el

where f, f' and f" are the function f(E) and its first two derivatives
evaluated at E = E_ (cf, Traub, 1964, P, 81, Schroder's formula), To our
knowledge R, Broucke first applied this scheme to the solution of Kepler's
equation, If the second term in the bracket is neglected, eq, (2) becomes
the Newtcn-Raphscn scheme, Whereas the third order scheme possesses a
stronger local convergence property, compared to Newton-Raphson it does so
at the cost of (i) computing the term %ff"/f'2 per iteration and (ii) more

sensitive dependencc on the initial estimate E For our particular

0°
prcblem on hand, since esinE = f"(E) is needed in the computation of f(E)

anyway, the computation of the extra term <nsts only three multiplications
and one division ~ a very minor additional cost, Thus the impertant thing

is to insure that fairly good initiel estimates are provided.

2. Initial Estimates

Rearrange eq, (1) as follows:

y = - sin(ey+M) (3)

JPI1, Technical Memorandum 33-496



and consider the function and derivative values y(M,e) and y'(M,e) =

g—ﬂ(M,e) on the M-e plane; we have,

A I
' oy R |
T 1
y(0,e)=0 'os‘ \\._ y(Mo)e)=l y(me)=0
1 N 1
y'(o’e)=lfz p\‘d- y'(MO,e)=0 y'(me)= - ——
®
1 . \ 3
0 n/2 n M
FIGURE 1

Function and Derivative Values of y(M, e) at
Three Critical Lines on the M-e Plane

The value MO =12T - e has a special significance: the function y(M,e) increases

monotonically from M = O to a maximum at M, and then decreases monotonically

from M = Mo toM=m,

In many practical applications, the initial estimate is taken to be
EO = M, or Yo = 0. Whereas this approximation is inexpensive to compute,
it is inaccurate for numerous values of e and M, thereby requiring many
iterations for those cases, In particular, this initial estimate will
actually lead to divergence [for large eccentricity, say, 0,93 <e < 1,] of
either Newton-Raphson or other iterative schemes, Another proposed initial
estimate is to use the first few terms of a Fourier series expansion of E
in terms of M (cf, Brouwer and Clemence, P, 76, egs, 70 and 71). Rearrange-

ment of terms up to e3 in eq, 71 yields

sinM [ - e2 sinM ] (1)

y0 = l-ecosM 2 il-ecosMs

JPL Technical Memorandum 33-496 .



Whereas this estimate is good for small eccentricity, it also leads to
divergence for large e, and it further costs as much as one iteration as
defined in eq, (2).

An attractive moderate alternative to the above two would be to find
simple quadratic or cubic functions of M to match both function and deri-
vative values at M equal to O, M_ and ™, The following two cubics match

0
the conditions chown on Figure 1:

2 2
A(M,e)=1—(1--:—) [1+—M-3¥;J 0 <M <M (5)
o o
_ m-M |2 2(m=-M)  (m=M)
B(M,e) = 1 - (1 - ?:ﬁg) [1+ ol ] My sMs<T (6)

The cubic (6) is a fairly good estimate for all e, with the largest absolute
error of the order of 10-2; but the cubic (5) becomes very poor as e = 1,
This poor estimate stems from the matching of large derivative at M = O,
thereby causing an "overshoot'., One way to remedy this difficulty is to
relax the requirement of matching y'(0O,e) and look for higher degree poly-
nomials that are monotonic in [O,Mo] - a property intrinsic to y(M,e).
Keeping in mind that we are only interested in very simple initial estimates,
we propose to investigate the following

¢, Me) =1- (1), Q=(1-3), osMsM, k2,3,... (7)
0 0

The sequence {CR(M,e)} yields the correct values of y(0,e), y(Mo,e) and
y”(MO,e) at M=0, M, but for each k Cﬁ(o,e) matches y'(0,e) at only one
value of e, as shown in the table below:

JPL Technical Memorandum 33-496



c1(0,e) = y'(0,e) = (1)

k e
2 0.43
3 0.72
L 0.81
5 0.86
6 0.89
7 0.91
8 0.92

This suggests that we should choose different values of k for different
ranges of e, Moreover, from the viewpoint of computational efficiency, it
is best to increase k geometrically for increasing e, Since the quantity
Q2 is needed in A(M,e), it leads us to choose k=l, for e > 0.7 and k=8 for
e > 0.85, respectively.

We could have used a higher degree C, as e -+ 1, say, Cl6 for e > 0.99;

k
but we expect it to fail for some very small region in the left upper
corner of Figure 1. The reason can be seen as follows, As M < 0 and

therefore E + 0, eq. (1) can be written as

3
E-M-dE-%)wO (8)

There is some combination of e and M such that the E3 term in eq. (8)
dominates so that E behaves like the cube root of M, which has very
different functional properties than a polynomial, Therefore it is best
for such cases to find an estimate that contains the cube root behavior,

The most obvious choice would be a real solution of eq., (8): (AMS 55, P, 17)
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3 A =i/ 3
D(M,e) = [r + (Q3+r2);]l/ + rr - (q3+rL)l]l/ ’ (9)

|
[

where, r = %?, q = é(l-e).

This initial estimate costs about as much as one iteration, but will certainly
save more than one iteration in the small region in question., Trerefore it
is well worth the effort, Based on some empirical results we have chosen

this small region to be 0.96 <e <1, 0 <M < 0,02,

In summary, we first reduce the problem to the range O <e €1, O <M< n
and then use as initial estimates the 4 approximations in various regions as

indicated diagrammatically in Figure 2,

e
lT_o.oz ~__"hfo_=§ C -
0.9 '
D(M,e) ~ ' bl '
eq. (9) §k=h or 8, eq. (7) \
o.7|__-—-. L B(M’e)
! eq. (6)
i A(M,e)
l eq. (5)

ol \ oL

FIGURE 2

Initial Approximations for Different kegions
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These approximations are 211 fairly cood in the sense that with them usually

""" 8

only one or two iterations are required to achieve an accuracy of 10 ,

Subroutine Described

LQRTRAN V subrrutines have been written for single and double precisions
for the UNIVAC 1108 computer. These programs take M and e as input and
return E together with the number of iterations. In the subroutine are
used standard FORTRAN features except for a cube roct function which may not
be part of other FCRTRAN compilers, In such case one should use the oper-
aticn **(1,/3.) to replace the cube root function, The double precision
subroutine calls the single precision onc and does one iteration, Certain

computational details are described as follows,
1., Summary cf Computing Procedure

(a) Take input e and M; ascertain that O < e < 1;

(b) Reduce the problem to ﬁ in [0,n] as described on p. 1;

(¢) Choose appropriate initial approximation;

(d) Go to iterative schene,

(e) When convergence is achieved add on the proper multiple of =

and/or sign to bring E into the same revolution as M.

It shoull cve noted that step (c) is not as complicated as it appears at
first glance, For ﬁ > MO’ only one logical test is required, For ﬁ < Mo
and e € 0,7, two are required. Even in the worst case only four tests are
required., Such overhead is negligible compared to the computation of

several to ten additional iterations with pocr initial estimate,

2. Testing of Subroutine

(a) A preliminary testing is performed for selected values cf eccentricity
e = 0.1, 0.2,...,0.9, 0.93, 0.9, 0.97, 0.98, 0.99, 0.995, 0.999, 1.0.
For each e we take the mean anomalies M=0, 0.001, O0.C1, 0,1, 0.2, 0.8,
1.4, 2.0, 2.6, 3.1k, 3,14159265, 1In these preliminary tests we
perform the iterations in double precision, (~1C_18) focussing
our attention to the truncation error as a function of the difference

betweer. two iterates |Ek+l-Ek| in eq, (2). 0., K. Smith (1961)

JPL Technical Memorandum 33-496 7



(b)

(c)

showed thal for the Newton-Raphson iteration, a requirement
g =2
|Lk+l-Ek| =19

than 10-8 for any e <« 0,99, Eq. (2), having a stronger corvergence

will guarantee that the truncation error is less

property, will certainly possess a more liberal requirement, More-
over, theoretical bounds tend to be too conservative, Empirical
investigations of values cf e and M mentioned avove show that the

. ! T T - . . .
requirement \hk+l-Ek| < 2,5x10  is sufficient to obtiin a solution

with truncation error less than 10 .

An intensive testing is performed for 1000 subintervals in O <M <1
and 20 in 0 s e <1, A pseudorandom pair of (e,M) is computed for
each of the 20,000 little rectangles,

For each such pair the input M is compared wicth a computed Mc =
Ec-esinEc from the single precision subroutine, and the difference

AM = Mc-M gives an indication of the error AE in E, viz,,

M+ AM = E + AE - esin(E+AE)
= E + AE = esinkcosA¥ = ecosEsinpE
~ (E-esinE) + AE - (ecosE)AE

or maximum AM = AE(l+ecosE) < 2AE,

The maximum and root-mean-square absolute "errors" for AM are

given in Table 1, The number of iterations required siiould serve
as a very accurate indicator of the efficiency of the subroutine,
since, as mentioned before; the cost of initial ectimate is sub=-
stantially smaller than that cf an iteration (except for the region
0 <M<0,02 and 0,9 s e <1), For the 20,000 cases reported,
4L2,0% take one iteration, 57.8% take two and 0,2% take three, The

detailed breakdown 1s also recorded in Table 1.

Tests of the reduction of range of M to [0,n) are conducted for
the value of e and +100 times the values of M as defined in (a).
Again the magnitudes of AM are studied to ascertain proper per-

formance of the subroutine.

JPL Technical Memorandurn 33-496



TABLE 1

PERI'ORMANCE STATISTICS OF SUBROUTINE KEPSP

Percent of Cases With n Iterations
(for e from O up to largest value

i Interval of e ; Max AM | RMS AMAJ of specified interval)

! 7 '[

‘ . x1070 : x0™? n=1 n=2 n=3

i i b ‘

; (0, .05) | 3.0 0.2 | 10 ! o0 0

(.05, .1) b5 |06 1 100 | o 0

(1,5 | 6.0 é 0.8 . 981  Lg 0

| (15,.20) | 60 . L7 ! 933 | 6.7 0

| (.20, ,25) 6.0 | L7 !  89.6 ; 10k 0

i (.25, .30) | 6.0 { 17 | 8.2 | 138 0

i (.30, .39) 6.0 | 1.8 80.6 | 19.4 0

; (.35, o) | 6.0 % 1.7 75.2 . 24.8 0

i (Lbo, LbY) ; 6,0 ; 1.8 70.2 . 29.8 0

& (.45, ,50) 1 6.0 1.8 65.9 . 34,1 0

(50, .55) | 6.0 1.9 | a1 39 0

(.55, .60) | 6.0 1.9 % 58.8 | 41,2 0

- (.60, .65) | 6.0 2.0 | %.8 | b43.2 0

© (.65, .70) | 6.0 L | sa9 1 w6 0

£ (.70, .75) | 6.0 1.9 | 51,3 ;  L8.7 0

' (.75, .80) 6.0 1.9 49,2 . 50.8 0

! (.80, .85) 6.0 2.0 47.0 | 53,0 0 .

| (.85. .90) 6.0 2.0 hs.1 | 54,6 0.3 %

| (.90, .95) 6.0 2.0 k3.5 l 56.3 0.2 i
(.95, 1) 6.0 2.0 J 42,0 i 57.8 0.2 i

JPIL Technical Memocrandum 33-496
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(d) The double precision subroutine just calls the single precision
one and performs one additional iteration, It is tested for the
values of (M,e) as given in both (a) and (c). The maximum AM

for this subroutine is '(xlO.l s

3. Usage of Subroutines

(a) Single precision version
CALL KEPSP(FM,ECC, ECAN, ITKKP)
FM

ECC = input eccentricity

input mean anomaly

SCAN = output eccentricity
ITKEP

an output number to indicate the number of iterations
required,

Types of arguments: Real FM, ECC, ECAN

Integer ITKEP
(b) Double precision version
CALL KEPDP(DFM,DECC,DECAN, I1KEP)
The first three arguments z2re obvicusly D,F. generalizalions of
the above,

(e¢) Restrictions

The input FM (or DFM) is any real (or double precision) argument
permissible on the machine, ECC (or DECC) must be restricted in

[0,1], otherwise an error message will be printed.

If the S,P, subroutine requires more than five iterations then a
message is returned stating that there exists some problem,
4, Listings of subroutines are given in an appendix.

Acknowledgement

I had numerous helpful discussions with Drs. R. Broucke, F, Krogh, and
C. Lawson. In particular, R, Broucke first introduced me to the initial
approximations in Brouwer and Clemence and supplied me two D,P, subroutines
with quadratic and cubic convergence, In addition, he also forewarned me
of anticipating difficulty for the region of parameter values specified by

the let't upper corner of diag, 2, C, Lawson first suggested to me the idea
ol polynomial approximations.
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APPENDIX

"—FOR»S1 KEPDP « DePe SOLUTION OF KEPLER-S tQe FOR ELLIPTIC MOTIONS
SUBROUT IMNE KEPDP ( DFMyDECC o DECAN o I TKEP )

HaNa)

_TYPES MUST BE DOUBLE PRECISION DFMyDECCs DECAN

INTEGER ITKEP

N N

C METHODeesCALL KEPSP TO OBTAIN RESULT IN SINGLE PRECISLﬂNo THEN 1

< ITERATION WILL YIEID DQUBLE PRECISION RESUITs USING AN ITER=
C

C

ATION SCHEME WITH CUBIC CONVERGENCE PROPERTY

DOUBLE PRECISION DFMyDECCyDECANSFPsFPPyUsFMLsFMM,PI
DATA PI/3414159265355979324D0/

C
C TEST FOR RANGE OF ECCENTRICITY
C

IF (DECC oGi:se OeDO sANDe DECC oLEe 1eDD) GO TO 10
WRITE (6s5)DFMsDECC
5 FORMAT(1Xs-ECCENTRICITY OUT OF RANGE ase—s5X9s~MEAN ANOMALY=—31PD106
*  3,10Xs—ECCENTRICITY==91PD10+3)
RETURN
10 _CONTINUE

1FM=1 e

IF (DFM .GEe 0.0C) GO TO 8

DFM=-DFM

TFM=-1

8 CONTINUC .

C REDUCE RANGE OF PROBa TG (~P1sP1)

ML=IDINT(DFM/PT)

FML= (ML+MOD (ML s21)

FML=FML*P [

FMM=DF M=F ML_

IF MU=EVEN, LET FM=MLE¥PI+FMM, WHERE TMM IS IN (Q.PI)

iF ML =0DDsy LET FM=(ML+1)%*PI+FMMy WHERE FMM IS IN (=PI+0)
FOR THE ODD CASEs FIRST COMPUTE SOLN FOR ABS(FMM) AND THEN
TAKE NEGATIVE OF RESULT SUBSEQUENTLY

s la¥a lakalls

IF(FMM oLTe 0eDO) FMM=—FMM
FM=FMM

ECC=DECC

CALU KEPSP{FMsECCHEGsISP)
DECAN=EO

FPP=DECC*DSIN(DECAN)
FP=1eDO-DECC*#DCOS(DECAN) _
IF{FP olLls LleD-16) FP=FP+1eD~16
U= (DECAN-FMM-FPP) /FP
DECAN=DECAN=U*{ 1eDU+0e5DO®FPPX*U/FP)

IF (DFM <.LTe FML) DECAN=-DECAN
DECAN=FML +DECAN
ITKEP=15P+1
IF(IFM «GEe 0) RETURN
C A NEGATIVE VALUE FOR IFM RECORDS THAT THE INPUT FM LT O
DECAN==DECAN
DFM==DFM

RETURN
END

JPL Technical Memorandum 33-496 11




-FORsS! KEPSP
SUBROUTINE KEPSP_(FM,ECCyECAN, | TKEP)

C COMPUTES SOLUTION FOR KEPLER-S EQe F{ECAN)=ECAN-FM-ECC®*SIN(ECAN)=0

L FOR ELLIPTIC CRBITSs leEes O oLEe FCC oLEo 1.
C

C INPUTeee . e e
C FM=MEAN ANOMALY IN RADIANS

C ECC=ECCENIRICIIY

C

C ECAN=ECCENTRIC ANOMALY
¢ ITKEP=NO, OF ITERATIONS
C .
C TYPES MUST UE REAL FMotCCoECANs INTEGER ITKEP
C
C_METHOD+e o ITERATION SCHEME WITH LOCAL CUBIC_ CONVERGENCE .
c
C ECAN(N+1)=ECAN(N)-F /FP* (1-F*FPP/(FP*FP*2)), WHERE
C F=F(ECAN) AS DEFINED ABOVE
C FP=1ST DERIVATIVE OF F = 1-FCC*COS(ECAN)
T FPP=2ND DERIVATIVE OF F = ECCXSIN(ECAN)
C
o USE POLYNOMIALS TO APPROXTMATE ECAN{(O)
C
CTHTS PROGRAM SHOULD ACHTEVE COVERGENCE IN 2 ITERATIONS AT MOST
C
DATA HALFP1/1457079633/ sONE/1e/sP1/ 3416159265/
C
¢ TEST FOR PROPER RANGE OF ECCENTRICITY
IF(ECC oLTe Oe «ORe ECC oGTs 1s) GO TO 40
C
1FM=1
TF(FM <GE. 0] GO T0 3
FM==FM
IFM=-1
3_CONTINUE
C REDUCE RANGE OF PROBs TO (-P14P1)
ML=INT(FM/PI)
FML= (ML+MOD(MLs2) ) %P |
FMM=FM-FML
C
C IF ML=EVEN, LET FM=ML*PI+FMM, WHERE FMM IS IN (0,P1)
=000, STMLFIT*PT+FMM, WHERE FMM 15 IN (=P150)
C FOR THE ODD CASEs FIRST COMPUTE SOLN FOR ABS{FMM) AND THEN
T TARE NEGATIVE OF RESULY SUBSEQUENTLY
C
TFTFMM LT 0% FRM==FMM
C
FMO=HALFPT=FCC -
IF(FMM «GE. FMO) GO TO 15
E
C__INITIAL APPROX FOR CASES FM LT, FMQ
C

R=FMM/F MO

FK=(ONE-R)*(ONE-R)
IF(ECC «GTe 0e7) GO TO 8

FK=FK*#{ONE+Z2+*R-FMM/ (UNE-ECC))
GO TO 10

8 CONTINUE
FK=FK*FK

12 JPL Technical Memorandum 33-496



Y

U=(EO-FMM-FPP] /FP

FPP=EQO-FMM-TPP

IF(ECC oLTe "eB85) GO Tt 10
IF (FMM oGTe 05 e URe CC olLTe e76) H0 T0Q 3}
O=2e¥*(1e-ECC)/LCC
P=3e*¥FMM/ECC

C=CORT (WO, +R*l)
FO=CRRT(R+Q)+ChRT (K-

GO TC 25

CONTINUE

Fr=FK*FK

CONTINUE

El=1e~FK

GO TO 2L

CONTINUE

o — L — - o —— o — i . s

TIAL APPROUX FOR CASES FM oGTe FMO

Q=FMM=-PI
R=HALFPI+ECC
FI=ONE=(ONC+Q/R) %% 2% (ONE+Q* (HALFPI=FCC~2¢ )/ ((ECC+ONE ¥R}
CONTINUE

FO=FE 1 #F CC+FMM
CONTINUE
ITKEP=0

CONTINUE
FPP=ECC*SIN(EQ)

FP=ONE-ECC*COSTEOY
IF(FP oLTe 14E-8) FP=FP+1,E-8

PE=U*(ONE+Ns5*FPP*U/FP)

ECAN=EC-DE

10

15
C
C INI
C

26
= -

25

30
T35
¢

ITKEP=ITKEP+1
IF(ABS(DE) eLTe 2.5E-3) GO TO 35

EO=ECAN T T e T
IF(ITKEP= 5) 30540440
CONTINUE =~ 7 ' "'" T T
 ODD CASE WITH NEGATIVE RESULT
IF (FM oeLTs FML) ECAN=-LCAN
ECAN=FML+ECAN

IF (IFM +GEe 0) RETURN

C A NEGATIVE VALUE_FOR IFM RECORDS THAT THE INPUT FM LT 0
ECAN=-ECAN 2 - -
FM==FM
T 7TRETURN -
40 CONTINUE

WRITE (6+45) ECC,FM

____ 45 FORMAT(1X9s-ERROR IN KEPCUbs NOe OF ITER GT 5-510X» —ECCENIRICITY==
* s 1P EBeZ910Xs~MEAN ANOMALY=-9s1PEBe2)
RETURN
FND

JPL Technical Memorandum 33-496
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